
How do we audit generative algorithms?

KATY ILONKA GERO, Columbia University, USA

Auditing has become a powerful way of diagnosing problematic behavior in algorithms. This auditing can occur in research and
industry settings, often by people with technical expertise, but can also be surfaced by everyday users noticing and investigating
problematic behavior. Large-scale generative algorithms are in their infancy, and auditing them poses unique challenges, like that the
generative space can be gargantuan, even for limited inputs. In this provocation, I propose auditing generative algorithms as a problem
HCI researchers should take on. I identify what is unique about auditing generative algorithms, describe why a human-centered
approach will enable more robust and just auditing, and propose some avenues for future work in this space.

Additional Key Words and Phrases: algorithm auditing, algorithmic harm, human-centered AI

1 WHAT’S UNIQUE ABOUT AUDITING GENERATIVE ALGORITHMS?

Let’s start with what generative algorithms are. I define them as any algorithm that will generate new, plausible media.
In contrast, we can think of algorithms that deal exclusively with existing media: for example, classification algorithms
that apply labels to existing media, or search algorithms that surface existing media to users. Generative algorithms,
while not new, are not as widely used as others kinds of algorithms. Bandy [1] presents a systematic literature review
of audits of public-facing algorithmic systems, which includes 62 studies. Although he doesn’t explicitly distinguish
generative algorithms, by inspecting the 62 studies we can see that few are of generative systems. Instead, most are
algorithms that surface existing media to users, like search algorithms, recommendation algorithms, and targeted
advertising. One audit in his review that is about generative algorithms is [6], which audits suggested email replies, a
common way an everyday computer user may interact with a generative system. But their general scarcity in his review
indicates one unique aspect about generative algorithms: they are not (yet) very public-facing. However, the recent
improvements in large-scale ‘foundation’ models [2] suggest that generative algorithms may become more prevalent.

The other unique aspect about generative algorithms is their ability to generate huge amounts of outputs. While clas-
sification algorithms may theoretically be able take an infinite number of unique inputs, an auditor can select the inputs
based on the questions they are posing and appropriately scope their work. Search, recommendation, and advertising
algorithms are limited by the users attention—studying the first 𝑛 results is a reasonable representation of what users
experience—and so again an auditor can select inputs and scope their work. With generative algorithms, limiting the
number of inputs does not reduce the number of outputs in the same way as with search or classification algorithms.
The size of the output space is a function of the model and how it is used. For example, a language model can generate a
single, deterministic output (given an input) if using beam search when decoding, or it can generate an infinite number
of outputs if using a stochastic sampling method. Generative algorithms are often used stochastically, such that a user
can continually generate new media even with the same prompt. For example, SudoWrite (https://www.sudowrite.com/)

Author’s address: Katy Ilonka Gero, katy@cs.columbia.edu, Columbia University, New York, New York, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1



2 Gero, Liu, and Chilton.

Fig. 1. A screenshot from OpenAI’s ‘Playground’ for testing GPT3, a large-scale language model that generates coherent, fluent text
in resposne to an input. In this case we see that the generated text is detected to be ‘unsafe’, likely because it contains the word
‘lesbian’.

and StarryAI (https://www.starryai.com/) are commercial examples of generative language and image algorithms
respectively, and both allow repeated generation with the same input.

Thus auditors are faced with a tricky task: understanding the entire output space of an algorithm. Even within a
specific input, this is still challenging. Existing lines of research have begun to tackle this problem from a user-centered
perspective [4], considering not auditing but how users might navigate this space to achieve their own generative goals.
However, I argue that auditing presents a use case significantly different than users generating media for their own
purpose. Auditing requires uncovering problematic behavior as it may occur at a population level. While an individual
user may never encounter (or may be content to ignore) harmful outputs, this doesn’t negate the possibility that others
are experiencing harm.

Let’s consider an example of problematic outputs. Figure 1 shows a screenshot of OpenAI’s playground interface for
testing out the large-scale language model GPT3 [3]. Here we see a rudimentary (and problematic; I discuss this further
in Section 2) content warning when the system generates an output that contains the word ‘lesbian’. Imagine this
content warning detecting an output that was actually problematic. Such a warning does not help the user understand
how frequently problematic outputs occur, what may have caused it to occur, and what other kinds of problematic
outputs may be generated with the same input. This demonstrates how auditing is a problem unique from satisfying
the generative needs of a user.

2 WHY HUMAN-CENTERED DESIGN FOR ALGORITHMIC AUDITING?

Auditing generative algorithms for problematic behavior is occurring in other Computer Science subfields. For example,
uncovering problematic behavior in language models is an open line of inquiry in natural language processing (e.g.
[5]). However, as discussed by Shen et al. in their paper on everyday algorithm auditing [8], auditing by a research or
industry organization often suffers serious blindspots. Approaching algorithmic auditing as a human-centered design
problem is a way to bring more stakeholders into the auditing process. And because large-scale generative algorithms
Manuscript submitted to ACM



How do we audit generative algorithms? 3

are in their infancy, at least when it comes to widespread public adoption, we are posed to be able to incorporate
auditing practices into their usage from the start.

Unfortunately, we are already starting to see the adoption of “algorithmic taboos”1 by the owners of large-scale
generative algorithms, where potentially problematic output is filtered or suppressed. But because the automatic
detection of problematic output is difficult at best2 these filters can instead perpetuate the harm they purportedly
seek to address. For example, Schlesinger et al. describe how blacklisting certain words as a way to prevent chatbots
from generating hate speech is a crude solution that “masks the deeper ways hate-speech is entangled in histories of
power, community, and nationhood” [7]. When you don’t let an algorithm, for instance, generate the word ‘lesbian’,
you reinforce homosexuality as a taboo topic and contribute to its erasure. But this is precisely what many algorithms
do—see Figure 1 for an example of a content filtering algorithm which seems to detect unsafe content anytime various
identity words (like ‘lesbian’) are generated.3

Approaching algorithmic auditing as an instance of user interaction helps to center the various people who may
be involved in auditing—some may have technical expertise, but others may not. Some may come with very specific,
personal questions, and others may be ensuring more high-level requirements are being met. Some have been harmed,
and seek to identify the cause or redress that harm; others may be working to prevent harm from occurring. Enabling
all kinds of people to participate, through building tools and methods, will allow us as a society to better manage the
development of these new technologies.

3 APPROACHES TO HUMAN-CENTERED ALGORITHMIC AUDITING

In this section I think through one use case of auditing generative algorithms based on what I see regularly done in the
algorithmic art community. I call this the ‘sole author audit’. Consider this example: an artist has created a generative
algorithm that generates a new poem for every person that walks into an art gallery. The artist wants to make sure that
the poems don’t contain any offensive language. An approach I have seen is that the artist continually tests inputs
and checks the outputs, modifying the algorithm if need be. They do this until they feel they ‘understand’ the possible
outputs and are comfortable letting it generate unsupervised. Artists I have spoken to who use this approach feel
responsible for all system outputs, and want to know for themselves the scope of possible outputs. However, this process
is arduous and sometimes so difficult that an artist may abandon a project or technology if they do not feel they can
properly understand or predict what may happen when a system is let loose.

The sole author audit is a specific use case that we can consider as a human-centered design problem. How do
we give users the tools to explore the output space of a generative system and ensure they understand the scope of
possibilities? I see a number of areas of inquiry to build such a system:

• Interfaces for exploring the outputs.While the exploration of design spaces has a long history in computer science,
they typically assume that users are searching for a single (or perhaps a limited number of) outputs. In a sole
author audit, the user is attempting to scope out the entire output space.

• Meaningful metrics. Such metrics need to automatically measure some aspect of an output, such that many
artifacts can be generated and plotted in a output space defined by the metrics. For instance, automatic toxicity

1I first saw this phrase on Twitter: https://twitter.com/schock/status/1490378656597917701
2I would argue it is fatally flawed because problematic content is socially situated and cannot be detected based on the content alone.
3I have not done a formal audit of GPT3, nor its content filter, but based on my own experience and the experience of others (e.g. https://twitter.com/
schock/status/1490359579036762114) it seems like something like this may be occurring.

Manuscript submitted to ACM

https://twitter.com/schock/status/1490378656597917701
https://twitter.com/schock/status/1490359579036762114
https://twitter.com/schock/status/1490359579036762114


4 Gero, Liu, and Chilton.

detection algorithms could be used to guide users towards potentially problematic behavior for review. But
existing metrics may not work well for this use case.

• Open-domain tools. Users will likely want to audit new algorithms. How can we design tools that can work with,
or easily adapt to, the ever-changing generative systems that are being created?

The sole author audit is one use case that allows us to think through the requirements of auditing generative
algorithms; alternative use cases may involve many auditors, e.g. when a group of people come together to audit an
algorithm that they believe is causing harm. But use cases is just one approach. In his review of algorithmic auditing,
Bandy distinguishes between four types of problematic machine behavior: discrimination, distortion, exploitation, and
misjudgement [1]. Researchers could consider what is required to audit different types of harm in generative algorithms.
Alternatively, Shen et al. document everyday algorithm auditing, where users embark upon bottom-up auditing via
their day-to-day interactions [8]—researchers could look at what questions everyday users seek to ask of generative
systems, documenting and understanding the concerns that users have about these systems in order to guide work on
how to give users the ability to answer these questions.

4 CONCLUSION

So how do we audit generative algorithms? I defend this as an important question to pose, and propose lines of
inquiry—like the sole author audit—to tackle this question. I hope that this provocation encourages more people to
considering auditing an important activity that deserves attention from the research community.

REFERENCES
[1] Jack Bandy. 2021. Problematic Machine Behavior: A Systematic Literature Review of Algorithm Audits. Proc. ACM Hum.-Comput. Interact. 5, CSCW1,

Article 74 (apr 2021), 34 pages. https://doi.org/10.1145/3449148
[2] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut,

Emma Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel, Jared Quincy
Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea
Finn, Trevor Gale, Lauren Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter Henderson, John Hewitt,
Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling,
Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina Lee, Tony
Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell,
Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian
Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Rob Reich,
Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih,
Krishnan Srinivasan, Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu,
Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn
Zhou, and Percy Liang. 2021. On the Opportunities and Risks of Foundation Models. arXiv:2108.07258 [cs] (Aug. 2021). http://arxiv.org/abs/2108.07258
arXiv: 2108.07258.

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey
Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam
McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. arXiv:2005.14165 [cs] (July 2020).
http://arxiv.org/abs/2005.14165 arXiv: 2005.14165.

[4] Vivian Liu and Lydia B Chilton. 2021. Design Guidelines for Prompt Engineering Text-to-Image Generative Models. arXiv preprint arXiv:2109.06977
(2021).

[5] Ethan Perez, Saffron Huang, Francis Song, Trevor Cai, Roman Ring, John Aslanides, Amelia Glaese, Nat McAleese, and Geoffrey Irving. 2022. Red
Teaming Language Models with Language Models. arXiv preprint arXiv:2202.03286 (2022), 31.

[6] Ronald E Robertson, Alexandra Olteanu, Fernando Diaz, Milad Shokouhi, and Peter Bailey. 2021. “I Can’t Reply with That”: Characterizing Problematic
Email Reply Suggestions. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association
for Computing Machinery, New York, NY, USA, Article 724, 18 pages. https://doi.org/10.1145/3411764.3445557

Manuscript submitted to ACM

https://doi.org/10.1145/3449148
http://arxiv.org/abs/2108.07258
http://arxiv.org/abs/2005.14165
https://doi.org/10.1145/3411764.3445557


How do we audit generative algorithms? 5

[7] Ari Schlesinger, Kenton P. O’Hara, and Alex S. Taylor. 2018. Let’s Talk About Race: Identity, Chatbots, and AI. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems. ACM, Montreal QC Canada, 1–14. https://doi.org/10.1145/3173574.3173889

[8] Hong Shen, Alicia DeVos, Motahhare Eslami, and Kenneth Holstein. 2021. Everyday Algorithm Auditing: Understanding the Power of Everyday
Users in Surfacing Harmful Algorithmic Behaviors. Proc. ACM Hum.-Comput. Interact. 5, CSCW2, Article 433 (oct 2021), 29 pages. https:
//doi.org/10.1145/3479577

Manuscript submitted to ACM

https://doi.org/10.1145/3173574.3173889
https://doi.org/10.1145/3479577
https://doi.org/10.1145/3479577

	Abstract
	1 What's unique about auditing generative algorithms?
	2 Why human-centered design for algorithmic auditing?
	3 Approaches to human-centered algorithmic auditing
	4 Conclusion
	References

