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ABSTRACT
As more and more forms of AI become prevalent, it becomes
increasingly important to understand how people develop men-
tal models of these systems. In this work we study people’s
mental models of AI in a cooperative word guessing game. We
run think-aloud studies in which people play the game with
an AI agent; through thematic analysis we identify features of
the mental models developed by participants. In a large-scale
study we have participants play the game with the AI agent
online and use a post-game survey to probe their mental model.
We find that those who win more often have better estimates
of the AI agent’s abilities. We present three components for
modeling AI systems, propose that understanding the under-
lying technology is insufficient for developing appropriate
conceptual models (analysis of behavior is also necessary),
and suggest future work for studying the revision of mental
models over time.

Author Keywords
Artificial intelligence; mental models; conceptual models;
games; word games; AI agents; think-aloud.

CCS Concepts
•Human-centered computing→ Empirical studies in HCI;
HCI theory, concepts and models; •Computing methodolo-
gies→ Artificial intelligence;

INTRODUCTION
Mental models define how we interact with the world. When
we sit down to drive a car, or explain how lights work to a
child, or look for a file on our computer, we use our mental
models to make sense of the world and act on it. A mental
model, which is an individual’s understanding of how a system
works or behaves, is often distinguished from a conceptual
model, which is an expert or designer’s understanding of the
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Figure 1: A mental model of an AI agent has three components:
behavior at a large scale, the agent’s knowledge of various
topics, and behavior at the scale of an individual output.

system. Conceptual models are developed slowly and pur-
posefully by people with extensive knowledge of the system.
Mental models, in contrast, are developed quickly and often
unconsciously by people who know far less about the system
but still desire to use it. Discrepancies between the two can
lead to a host of problems, ranging from misunderstanding
and confusion to the abandonment of a system altogether.

As AI systems appear in high-stakes environments, such as
decisions about who to hire [10] or diagnosing diseases [6],
understanding people’s mental models of these systems be-
comes increasingly important. Additionally, the label ‘AI
system’ may be applied to a variety of technologies, from lin-
ear regression-based predictions to neural network-generated
images, complicating our ability to learn about them. This has
spurred HCI researchers into Explainable AI [8, 25, 26, 15],
but part of the difficulty of this research is a lack of conceptual
models of AI systems. A rich understanding of the underlying
AI technology does not always lead to a rich understanding of
how an AI system will behave. The fact is, for now, many AI
systems remain somewhat idiosyncratic in their behavior.

Yet these AI systems are being used, and we are developing
mental models that guide our use of and reasoning about these
technologies. Many important questions remain open. In the



context of a cooperative word guessing game, we pose the
following research questions:

RQ1 What should conceptual models of AI systems include?

RQ2 How do users develop mental models of AI systems?

RQ3 What encourages accurate mental models of AI systems?

AI systems are used in a wide range of situations and no one
use case is a perfect representative. We focus on cooperative
word games, which require understanding what your partner
is thinking. Studying mental models in this context has a
long history in linguistics [27] and more recently has gained
popularity in AI research [21, 4].

We use a game called ‘Passcode’. In this game one player tries
to guess a word that the other player is thinking of; the other
player provides one word hints. The game itself is grounded in
trying to understand what the other player is thinking, making
it an excellent test bed for studying mental models.

We ran two studies to investigate what appropriate conceptual
models of AI systems look like and how users develop mental
models of AI systems. The first is an in-person, think-aloud
study, in which participants play Passcode with an AI agent
while thinking out loud. This study allowed us to identify
the important aspects of a mental model and get a qualitative
understanding of how people think about AI systems.

The second is a large-scale online study, in which participants
played 5 or 10 rounds of the game and then filled out a survey
which probed their mental model of the AI agent. This study
showed us who makes accurate estimations of the AI agent,
and points us towards why these people do so.

This paper makes the following contributions:

• An example conceptual model of an AI agent consisting
of three key components (global behavior, knowledge dis-
tribution, and local behavior) based on the technological
structure and training procedure, as well as an analysis of
actual behavior.

• A thematic analysis of a think-aloud study (n=11) in which
participants played Passcode with an AI agent, illustrat-
ing the comments and concerns that arise when trying to
understand an AI technology.

• An online study (n=89) in which participants played Pass-
code with an AI agent and filled out a survey about their
mental model, showing that playing more games did not
increase the accuracy of the mental model, but that partici-
pants who won more often did have more accurate models.

RELATED WORK

Mental Model Theory
We draw heavily on an existing foundation of research when
creating our own framework for conceptual and mental models
and probing how mental models change over time. In the field
of design, Norman [20] considers four distinct things in the
consideration of mental models: the target system which is
the actual system a person uses; the conceptual model of the
target system which is “invented to provide an appropriate

representation of the target system” and tend to be developed
methodically by experts; the mental model of the target system
which is evolved by users through interaction with the target
system; and the scientist’s conceptualization of the mental
model, which is a model of a model. Through studies of human
error and human-machine interaction, Norman observes that
mental models are incomplete, limited, unstable, unscientific,
parsimonious, and lack firm boundaries. Norman finds that
mental models value utility over accuracy.

Greca and Moreira [11], considering mental models in the con-
text of science education, further discuss how instruction on a
conceptual model does not lead to students’ acquiring perfect
copies of it. They also observe that physicists use distinct men-
tal models when engaging with different phenomena, though
they use a shared conceptual model when presenting their re-
sults. In the educational context, they note that modification
of initial mental models is difficult, and suggest enriching
existing models rather than overhauling them.

Mental Models of AI Systems
Various work in HCI has tackled how people model AI sys-
tems, though few study the deep neural network-based systems
which are becoming increasingly popular. Kulesza et. al [13,
14] study mental models of an intelligent music recommender
system; they quantify people’s mental models with a survey
and find that a 15 minute tutorial (with an experimenter) signif-
icantly increased the soundness of participants’ mental models,
as did high fidelity written explanations. Bansal et. al [2] look
at the effect of different kinds of AI errors on people’s mental
models, using performance as an indicator of a mental model.

Moreso than users’ explicit mental models, research on AI
systems in HCI has focused on explainability and trust. Rutjes
et. al [22] argue for capturing a user’s mental model and using
it while generating explanations. Miller [17], in a comprehen-
sive review of social science related to explainable AI, invokes
the concepts of mental models through ideas of reconciling
contradictions and our desire to create a shared meaning. Yin
et. al [29] look at the effect of stated and observed accuracy
of machine learning models on people’s trust of the system,
finding that the effect of stated accuracy can change depending
on the observed accuracy. Relatedly, Bansal et. al [3] look
at the effect of updates to AI technology in human-AI teams,
finding that updates that increase AI system performance can
hurt overall team performance. We believe work on explain-
ability and trust would benefit from independent studies on
mental models, which is what we do in this paper.

Models and Inference in Language Games
Our work was heavily inspired by the study of mental models
in the context of language games, which has a long history
in linguistics [27] as well as AI research. In the context of
AI research, understanding the mental models of others is a
key element of communication that AI must acquire. The
‘Taboo’ word guessing game was put out as an AI challenge
[21], as the game “forces agents to speculate about their part-
ner’s understanding of the domain, rather than just performing
inference on their own knowledge”; a similar AI challenge was
suggested for the game ‘Hanabi’ [4]. Xu and Kemp [28] and



Figure 2: Example round of the game Passcode, hints provided
by the AI agent and guesses provided by the participant.

Shen et. al [23] study logs of people playing word guessing
games to understand how people tend to provide and receive
hints. In tandem there is work in which AI agents are devel-
oped to play these games [9, 12, 1], both to test theories about
communication as well as to contribute to larger AI goals.

SYSTEM DESIGN

Passcode: A Cooperative Word Guessing Game
To learn about the mental models of AI agents that people
develop, we use a simple cooperative word guessing game
which we call Passcode. It’s a two person game, in which one
person has a target word in mind and gives one-word hints to
get their partner to guess the target word. The player who gives
hints is referred to as the ‘giver’, and the player who guesses
is referred to as the ‘guesser’. The game starts with the giver
giving a hint like ‘toast’; after each hint the guesser must make
a guess, in this case maybe ‘bread’. If the guess is correct, the
game is over and the players win. In our version, the game is
web-based, such that single-word hints and guesses are typed
and displayed to both players1. Figure 2 shows a typical round
(i.e. guessing of one target word) of gameplay.

Passcode is cooperative, meaning both players are on the same
team and a win for one player is a win for the other. The benefit
of this type of game is that there is no reason, for any player,
to hide or disguise any information about themself or their
strategy. The structure of the game introduces opaqueness;
the goal is overcome that opaqueness. The game is explicitly
about trying to understand what your partner is thinking, which
makes it an ideal environment to study mental models.

AI Agent Description
We use a reinforcement learning-based AI agent trained to
play Passcode, developed by a team of AI researchers. In
fact we use two AI agents – one to play the giver (who has a
target word and gives hints) and one to play the guesser (who
is trying to guess the target word based on the hints). Each
AI agent has a neural network architecture. As with many AI
systems, these AI agents perform quite well at the game, but
1Passcode is similar to some other word games, like the television
game ‘Password’, and the card games ‘Taboo’ and ‘Codenames’.

Figure 3: Diagram of the ‘giver’ AI agent, called WordBot.
WordBot is a trained neural network, which has encoded infor-
mation from the training data. In addition, information from a
knowledge base is used as input along with the game state.

are not perfect. Below, we describe the high-level technical
details of the system. However, the technical details are not
the main contribution of this paper and for that reason further
details are omitted because the system is in submission in
another venue.2

The AI agents are pre-trained using two datasets of word asso-
ciations [19]3. They also always have access to the ConceptNet
knowledge base [24], which encodes common sense knowl-
edge. After a period of pre-training, the giver and guesser
agents are trained in a reinforcement learning framework by
playing with each other. The architecture of the giver agent is
such that it considers the most recent (if incorrect) guess of
its partner when selecting a new hint. The architecture of the
guesser is such that it considers all hints equally, regardless
of the order in which they were given. In use (i.e. outside of
training) neither agent retains any information about gameplay
from game to game. For instance, given the same hints, the
guesser agent will always guess the same word, regardless of
past rounds of gameplay.

We consider what a conceptual model (i.e. an appropriate men-
tal model) of the AI agent would look like. It is our belief that
a precise description of the neural network architecture and
training procedure does not represent an appropriate concep-
tual model for players. A conceptual model should reflect its
actual behavior, which might differ from its intended behavior.

For the rest of the paper we will focus only on the AI agent
for the giver. This is an important simplification, as the two
AI agents (giver and guesser) have slightly different actual
and intended behaviors, given the different roles they play.
Figure 3 shows a diagram of the AI agent for the giver.

2The development of the AI agents was done independently of the
work presented in this paper.
3The second dataset is a collection of taboo cards from the website
http://playtaboo.com.



AI Agent Characterization
Let us consider the behavior of the AI agent for the giver,
which we called ‘WordBot’. We take a systematic approach
to characterizing the behavior of the agent. For example, we
cannot assume that because WordBot has access to a knowl-
edge base, it effectively uses all that information to generate
meaningful hints. In the ConceptNet knowledge base, there
is rich information about Paris – that Paris is the capital of
France, that the Eiffel Tower and the Louvre are located there,
that it has cafes and boulevards. Yet the hints that WordBot
provides for the target word ’paris’ are ‘city’, ‘usa’, ‘plant’ –
WordBot appears to have very poor knowledge of Paris.

To characterize WordBot, we run the following analyses.
These include analysis of gameplay mechanics as well as
knowledge categories. In considering WordBot’s knowledge,
we selected categories for which the system had access to
knowledge in ConceptNet, yet did not generate meaningful
hints from many words in that category.

Adjusting hints. How often does WordBot change its hint
given the previous guess? We analyze 600 games across 20
random target words (with 5 hints per game). For each target
word, we generate 30 unique guess sequences using the related
terms for the target word from ConceptNet. We measure how
many of the 30 guess sequences resulted in hint sequences that
differed from the most common sequence. Hint sequences
differ from most common sequence 11.8% of the time. The
majority of differences are in the last hint, so this number
drops dramatically when you consider not all players see all 5
hints, e.g. it is 4.5% when considering the first 3 hints.

Knowledge about food/cooking. We look at 20 food or cooking
words: 5 cooking verbs, 5 cooking objects, 5 raw foods, and
5 processed foods.4 Compared to a baseline of 20 random
words, we look at the number of related terms in ConceptNet
(the knowledge base available to WordBot), and the number
of bad hints generated by WordBot (its actual behavior). (The
number of related terms for a given target word is the number
of English terms in the AI agent’s vocabulary found in Con-
ceptNet, querying the ‘related to’ relation for the target word.
The number of bad hints is determined by the authors of the
paper; bad hints are those either totally unrelated, e.g. ‘plant’
for ‘paris’, or too vague, e.g. ‘thing’ for ‘pot’.) Results are in
Table 1, where we compare these measures to a baseline set of
20 random words. We see that WordBot both has less access
to information about food/cooking (mean 15.6 relations/word
compared to baseline of 23.8), and produces bad hints more
often (11.5% of the time to baseline of 4.0%).

Knowledge about geography/places. We look at 20 geography
or place words: 5 well-known cities, 5 well-known countries,
and 10 geological landforms.5 Similar to above, results are in
Table 1; we see that WordBot both has about as much access to
information about geography/places as the baseline (mean 21.3
relations/word compared to baseline of 23.8), and yet produces

4The list is: fry, roast, chop, cook, boil, knife, oven, spoon, pot, pan,
apple, pork, broccoli, rice, egg, bread, yogurt, soup, cake, dumpling.
5The list is: london, paris, tokyo, rome, beijing, usa, france, china,
india, germany, beach, coast, valley, mountain, desert, ocean, field,
rainforest, iceberg.

Target Word Knowledge Base Data WordBot Behavior
Category (avg # relations) (% bad hints)

random 23.8 4.0%
food/cooking 15.6 11.5%

place/geography 21.3 36.4%

Table 1: Comparison of information in the knowledge base
and the quality of WordBot’s behavior. Each target word
category contains 20 words. Note that having a high number of
Knowledge Base relations does not predict WordBot behavior.

bad hints much more often (36.4% of the time to baseline
of 4.0%). This means that although WordBot has access to
information about geography/places, its behavior indicates it
is not particularly knowledgeable about this category.

Synonym versus antonym hints. Based on an analysis of 20
random target words, we mark each hint (in the most common
hint sequence) as a synonym, antonym, or other relation to the
target word. Other includes many kinds of relations, such as
adjectival, common collocation, or similar type (e.g. ‘pot’ is a
similar type to ‘pan’). We find that synonym hints occur 29%
of the time, and antonym hints occur 11% of the time.

Thus, we deduce a conceptual model of WordBot from a com-
bination of understanding its structure and training procedure,
and an analysis of actual results from playing with WordBot.
We note that the terminology we use below was developed
iteratively and informed by the results of Study 1. We present
the following conceptual model of WordBot:

Global Behavior
• WordBot does not remember or adjust its hints based on

past rounds.

• WordBot rarely adjusts its hints based on incorrect guesses
within a single round.

• WordBot has no explicit hint sequencing strategy.

Knowledge Distribution
• WordBot does not know anything about pop culture, as this

is not in the training data.

• WordBot has limited knowledge about geography/places.

• WordBot has decent knowledge about food/cooking.

Local Behavior
• WordBot gives both synonym (29% of the time) and

antonym (11% of the time) hints.

• WordBot gives one or more hints that are not highly related
to the target word in 4% of games.

• WordBot takes into account multiple senses of a word (if a
word has multiple senses).

We note that our use of the term “local behavior” is related
to the team “local explanations” as used in the explainable
AI literature [18]. The “local behavior” portion of a system
model identifies how individual decisions or actions made by
a system; “local explanations” seek to explain these individual
decisions or actions.



STUDY 1: IN-PERSON THINK ALOUD
In this study, we brought participants into the lab either as
individuals or as teams of two to play Passcode with WordBot
while thinking out loud about their strategy and the strategy
of WordBot. We conducted a thematic analysis [5] on the
resulting data. This study gave us insight into the important
aspects of a conceptual model, the kinds of mental models
players develop, and how players come to their beliefs about
the system. Additionally, this study guided our development of
a ‘mental model’ survey, used in Study 2 to probe participants’
mental models of WordBot.

Experimental Design
11 participants were recruited from a local technology com-
pany (IBM), though not all participants worked on technology
development (for example some worked in operations). The
average age was 22.4 (± 2.8) years. The gender ratio was 55%
male/45% female. 64% of participants had some exposure to
coding. All participants had read about ‘artificial intelligence’
in the news.

5 of the participants played the game individually and 6 played
in teams of 2 (in which they together played one role), result-
ing in 8 observational studies. We included team-play to
encourage out-loud thinking (participants could talk to each
other) and in-depth reflection on the AI agent (participants
often negotiated or collectively brainstormed their next move).

All participants, either as an individual or on a team, played
5 games as the giver and 5 games as the guesser, the order
counter-balanced. The AI agent, WordBot, assumed the other
role (guesser vs giver) and participants interacted with Word-
Bot through a simple command-line version of the game. Par-
ticipants were given a maximum of 10 guesses per game; if
they had not won the game within 10 guesses, they lost the
game and moved on to the next round.

All participants played the game using the same target words
in the same order. These words were randomly selected from
the vocabulary of the AI agent and had a range of difficulties.
Difficulty is measured by the accessibility index, a measure
from [19] that reports how often a word is thought of when
prompted with other words. For example, ‘dog’ has a high
accessibility index, whereas ‘trombone’ has a low one. It is
related to, though not identical with, frequency of usage.

When participants played as the giver of hints, with the AI
agent guessing, they had the target words minute, run, polish,
genius, life. When they played as the guesser, with the AI
agent providing hints, they had the target words vase, calm,
forgive, plant, fly.

Participants were given instructions for how to play the game,
and instructed to think out loud as they played the game. They
were told the study would be audio-recorded. If a partici-
pant was being particularly quiet, they were prompted to talk
through their thought process.

After playing all 10 games, participants were asked a series
of questions in a semi-structured interview designed to elicit
information about how the participants thought the AI agent

worked, and what they would need to do to better understand it.
Participants were then debriefed and allowed to ask questions.

Data Analysis
To conduct the thematic analysis, three of the authors tran-
scribed all of the audio recordings. Then two authors read
all of the transcriptions at least twice, on the second reading
taking notes of pertinent utterances and themes. Together they
developed a series of codes and example utterances for analyz-
ing the data, given our research questions. They then coded
all transcripts individually, marking relevant utterances with
the appropriate code. Finally, the two authors reviewed all the
transcripts together to discuss any disagreements, and formed
an agreement on the final coding of the data [16].

Results
Overview
Table 2 describes the 10 codes developed through the thematic
analysis, ordered by their prevalence in the transcript. (Preva-
lence is calculated as the number of utterances marked with
a particular code divided by the total number of utterances
marked with any code.)

Not all codes correspond to expressions of a participant’s
mental model. Instead, many correspond to moments when
a participant’s mental model is used or challenged. Broadly,
participants remarked upon what the AI agent knows and how
the AI agent plays the game. Utterances marked with a code
were either explicit or implicit statements about these things,
or questions or expressions of uncertainty about these things.

Discussion of Prevalent Codes
The most prevalent code was anomalies/distress/trust, which
included all utterances in response to an unexpected move by
the AI agent. These responses included simple acknowledge-
ment of an unexpected move, distress in which the participant
believed they were stupid for not understanding the unexpected
move, and concerns about not trusting that the AI agent was
making good or meaningful moves. There were several un-
derstandably confusing moves from the AI agent, for instance
giving the hint ‘blood’ for the target word ‘plant’, as well as
moves that in retrospect made sense though in the moment
confused players, like giving the antonym hint ‘hectic’ for the
target word ‘chill’.

Some participants were slow to fault the AI agent even when
reviewing a game in which some hints were clearly not helpful;
instead they would interpret and justify strange moves. Others
immediately blamed the AI agent, and were slow to acknowl-
edge that they may have misunderstood it. These moments of
confusion forced participants to judge the AI agent in order
to progress, and often resulted in a participant changing their
mental model when the target word was revealed.

As discussed in the System Design section, the AI agent has
no explicit strategy for how to select hints or guesses. The next
hint or guess could correspond to a wide range of different
semantic relations, from synonymy to adjectival to common
collocations. The second most prevalent code was pattern
seeking in which participants actively sought out an explicit
strategy for the AI agent. Interestingly this differs from how



Code Prev Description and Example Quote

anomalies/distress/trust 18% Noting unexpected behavior from the AI agent, or expressing distress or mistrust in response
to unexpected behavior.
P6: Wait so we have ‘chill’ and ‘hectic’. I’m confused.

pattern seeking 16% Discussing or questioning specific patterns (within a single game) the AI agent uses to give
hints/guesses.
P9: It would make me feel bad if there was a pattern that we were totally missing.

synonyms/antonyms 15% Any discussion of synonyms or antonyms as it related to the type or efficacy of hints.
P2: ...the fact that it could give antonyms because I thought it would only do synonyms.

AI knowledge 14% Discussion of what the AI agent does or does not know, or questioning the same.
P2: I mean it smells but I don’t think the AI would know that nail polish smells.

memory/weighting 12% Discussion of how much the AI agent remembers, or how much ‘weight’ is given to subsequent
hints/guesses.
P4: I guess I need to look at all four of these equally.

steering 10% Noting the need to “steer" the AI agent (or be steered by the AI agent) toward the target word,
or questioning how to best get the AI agent “back on track".
P10: How to get them back on track when they start going off...

need for explanation 7% Expression of desire for explanation for a single hint/guess or generally for how the AI agent
made decisions.
P7: Can I know what the AI is? That would be very useful for me.

reflection 5% Explicit reflection on past game plays to inform the next move.
P9: Uhhh I feel like this is another ‘minute’ situation. This feels familiar.

personification 3% Questioning or hesitation about how to describe the AI agent, or explicit discussion of the AI
agent as one would a human.
P8: Maybe a different unit of time would lead them – it – down a better path.

perspective taking 2% Explicit discussion of the perspective of the AI agent.
P8: ...no one would say ‘give’ to help us guess ‘marriage’. P9: Maybe a bot would.

Table 2: Name, prevalence, description, and example quote of the ten codes found through the thematic analysis of the think-aloud
transcripts. Prevalence is calculated as the number of utterances marked with a particular code divided by the total number of
utterances marked with a code; there were exactly 100 utterances so it also represents the utterance counts.

people typically play the game with other people, based on pi-
lot testing and the authors’ own experiences with word guess-
ing games. In games between people, participants tend to
understand that there is no one best strategy for selecting hints,
and that a given teammate is likely to change strategies based
on the situation. Yet, when study playing with an AI agent,
people longed to understand and explain all the moves, per-
haps because their teammate was a foreign agent they could
not directly relate to.

Synonyms/antonyms, AI knowledge, and memory/weighting,
the next most prevalent codes, all refer to explicit theories
of how the AI agent worked or what it knew. Sometimes
participants stated what they thought they knew about the AI
agent. At other times participants questioned how the AI agent
worked, or what the AI agent knew, using specific examples.

Synonyms/antonyms refers to discussion of whether or not
the AI agent used antonyms as hints, or to the AI agent’s
preference for synonyms. Almost all participants were at first
confused by the use of antonyms as hints, and later came to
understand it was a commonly used strategy.

AI knowledge was often a discussion of what a participant
thought the AI agent would not know, resulting in the par-
ticipant looking for a different hint. Generally participants
suspected the AI agent didn’t know much about pop culture,
for instance that it probably didn’t know who ‘Jimmy Neu-
tron’ (a cartoon character) was, or that ‘Sorry’ is a pop song
by Justin Beiber. However, they also wondered about proper
nouns (such as if the AI agent knew that ‘polish’ was a verb
but also an ethnicity) and detailed knowledge (would it know
that ‘nail polish’ smelled bad).

Finally, memory/weighting refers to a discussion of what the
AI remembers, within a single game or across the many games
participants played. Several participants assumed the AI agent
remembered past plays because the internet (broadly assumed
to have AI involved) seemed to have knowledge of their past
usage as demonstrated by targeted advertisements. Others
wondered if perhaps it remembered little about their past plays
because digital assistants like Siri and Alexa seemed to not
remember anything from past conversations. The remaining
codes were less prevalent, and can be reviewed in Table 2.



Model Components and Survey Development
We uncover three components for modeling an AI agent. These
components were developed iteratively through discussions
by the entire team of researchers after the thematic analysis of
Study 1 was conducted. These components are a framework
for describing a conceptual model or a mental model; for ex-
ample in the System Design section we use them to articulate
the conceptual model of WordBot.

The components are: Knowledge Distribution which in-
cludes conceptions such as whether or not the AI agent knows
about specific people or attributes, Local Behavior which
includes conceptions of what kinds of hints the AI agent is
likely to give or respond best to, and Global Behavior which
includes conceptions of how the AI agent tends to play the
game, such as what and how much the AI agent remembers
from previous interactions.

Using these results, we developed a set of Likert-scale sur-
vey statements, several per aspect, to determine how players
thought the AI agent worked.

It’s important to consider how a participant may know or learn
a correct answer. For instance, let’s consider the statement
“WordBot knows a lot about pop culture”. Given all infor-
mation about the system it’s possible to know that WordBot
knows nothing about pop culture – it is not available in any
of the training data, and there is no way for it learn it in a
reinforcement learning context. However, a participant who
has only played the game does not know all this. All they can
possibly know is that WordBot never makes any references to
pop culture, which suggests (but may not confirm) WordBot
knows nothing about pop culture. This is characteristic of
mental models – users develop an understanding of a system
based on their exposure to and use of that system.

STUDY 2: LARGE-SCALE, ONLINE GAMEPLAY

Experimental Design
To better understand what impacts people’s mental models,
we ran a large-scale, online study using Amazon Mechanical
Turk. For this study we limit participants to only playing as
the guesser, and the AI agent, WordBot, playing as the giver.

Participants were allowed a maximum of 5 guesses. If they
did not correctly guess the target word after these 5 guesses,
they lost the game and were moved to the next game round.6

We looked at three factors which could influence people’s
mental models:

• The number of game rounds played

• The target words played (i.e. difficulty, theme, etc.)

• The win rate of the player

Participants played either 5 or 10 game rounds, where each
round consists of trying to guess a single target word, and

6In the think-aloud study we allowed 10 guesses, and many partici-
pants became agitated toward the end of a game; several requested
a ‘give up’ option. To keep people invested, reduce irritation, and
maximize the use of people’s time, we decided to limit the maximum
length of the game.

played one of two wordlists (i.e. the target words to guess).
Participants playing only 5 game rounds played on the first
five words in the list. The two wordlists were balanced for
difficulty, as well as topic – for instance, each word list had
the same number of food-related words.

• List A (‘london’): london, egg, dog, clean, cold, beef, moun-
tain, clothes, help, music
• List B (‘china’): china, tomato, hard, friend, time, coast,

potato, hair, small, happy

Participants saw their words in a random order.

We could not control for how often a participant won or lost,
but in analysis split participants up into the top 50% of players
(‘winners’ – those who won the same or more than the median
amount) and the bottom 50% (‘losers’ – those who less than
the median amount).

The game was developed into an online web application using
Flask (a lightweight Python framework for web apps) and
React (a Javascript library for building front-end interfaces).7

Participants first took a short demographic survey, then played
5 or 10 game rounds, and then took a survey that asked ques-
tions about how they thought the AI agent worked.8 In pilot
studies, the average time for completion for the 5 game con-
dition was 11 minutes and for the 10 game condition was 13
minutes. Based on this, all participants were paid $3 for the
task, or about $15/hour.

Results
113 Amazon Mechanical Turk workers in total participated
in the study. Participants could only complete the study once.
Any participants who did not complete the correct number of
games or the post-game survey were removed. All guesses
by the remaining participants were inspected manually, and
any participant who clearly had not put in a good faith effort,
for instance always guessing whatever hint was given or al-
ways guessing the word ‘word’ regardless of the hints, were
removed. This resulted in 89 ‘good faith’ participants.

In addition to the two controlled conditions – the number of
required games and the word lists – we classified all partici-
pants as ‘winners’ or ‘losers’ based on the average number of
games a given participant correctly guessed the target word.
For instance, if a participant guessed 9 out of 10 target words
correctly, they had a win rate of 0.9. ‘Winners’ were those
participants who won the same or more than the median win
rate, which was 0.6. ‘Losers’ were those participants who won
less than the median rate. Table 3 gives exact breakdowns of
the participants and the conditions.

Demographics and Previous Experience
Participants were asked their age given several range buckets.
53% of our participants were 26-35 years old, with the rest
spread somewhat evenly across the buckets 18-25, 36-45, and
45+. All participants had at least a high school diploma, while
7A demo can be found at ibm.biz/wordbot.
8Development of the survey is discussed at the end of Study 1 Results,
and the survey questions in full can be found in the supplementary
materials.

http://ibm.biz/wordbot


all winners losers

wordlist A 42 30 12
5 games 20 14 6
10 games 22 16 6

wordlist B 49 34 13
5 games 28 23 5
10 games 19 11 8

all players 89 64 25

Table 3: Breakdown of the number of participants in the online
study. ‘Winners’ won more than or the same as the median
rate, which was 0.6; ‘losers’ won less than the median rate.
Note the uneven split despite splitting on the median – many
players won at the median rate, resulting in an uneven split
when these players are placed in the winner category.

Mean
Question (shortened) winner loser p-value

GLOBAL BEHAVIOR
adjusts hints based on guesses 3.9 4.6 .02
remembers past gameplays 3.6 4.4 .01
KNOWLEDGE DISTRIBUTION
knows about pop culture 3.7 4.3 .16
knows about geography/places 4.2 4.8 .09
knows about food/cooking 4.4 4.8 .26

LOCAL BEHAVIOR
many synonym hints 5.0 5.1 .62
many antonym hints 3.5 4.6 .01

Table 4: Results from post-gameplay survey, split by win-
ner/loser. Significant differences bolded. We see that losers
over estimate global behavior, and some local behavior. We
don’t see any differences in knowledge distribution, perhaps
because there was not enough exposure to the system.

58% also had a bachelor’s degree and 3% had an advanced
degree. 83% of the participants reported English as their native
language; despite a list of 10 other languages, the remaining
17% selected ‘other’, and many of these reported (using a text
field) Malayalam as their native language.

Despite a significant portion of non-native English speakers,
we saw no difference in win rate between native English speak-
ers and not. Similarly we saw no difference in win rate for age
or education level.

We had three questions that asked about participants’ familiar-
ity with word games, machine learning, and coding. As above,
these were not predictors of win rate.

Number of Games Played
There were no significant differences between any survey
answers for the number of games played. We had thought
that playing more games would give participants more time
and evidence with which to develop a more accurate mental
model. This does not appear to be the case. It could be that

the difference between 5 and 10 games is too small to make
a difference. A promising direction would be to look at the
difference between one session of 10 games, and multiple
sessions of 10 games, in which many games (perhaps 100
games) are played over several days. Given this, for the rest
of the analysis we group 5 and 10 game players together.

Word List
We tried to balance the word lists for difficulty and exposure to
particular concepts. While individual words vary in difficulty,
overall the word lists were quite balanced – for word list A (
‘london’) the average win rate was 0.63, while for word list
B (‘china’) the average win rate was 0.65 (p-value is 0.88; no
significant difference).

There was only one question in the survey which had a sig-
nificant difference between the word lists. Participants with
word list A (‘london’) reported that WordBot used antonyms
hints more than word list B (‘china’) did (mean response from
wordlist A: 4.4, mean response from word list B: 3.2, differ-
ence: 1.2, p-value of 0.00). A close examination of the hints
suggests this is true: looking at all hints provided wordlist
A (‘london’) had 20% antonym hints, whereas wordlist B
(‘china’) had 0% antonym hints.

This result indicates that participants were certainly respond-
ing to the games they played, and were not simply relying on
past or existing mental models of AI systems.

Win Rate
For every participant, we calculated their win rate: the fraction
of games they played in which they correctly guessed the
target word and won. The median win rate was 0.6. We split
participants into those who won as much or more than the
median win rate, and those who won less than the median win
rate. Our theory was that people who win the game more are
likely to have more accurate mental models; perhaps they win
more because they understand the system better.

We did see significant differences between these two groups.
Table 4 shows mean survey responses and significance levels.

Let’s consider the two global behavior questions. Losers tend
to believe (more than winners) that Wordbot takes into consid-
eration your past incorrect guesses, as well as previous game
plays. Both of these are untrue. Winners tend to be unsure, or
suspect Wordbot does not take into consideration these things.
Here it is clear that winners have a better understanding of
the global behavior of Wordbot than losers; losers tend to
overestimate WordBot’s abilities.

In the knowledge distribution questions, we see no signifi-
cant differences. It’s possible that to understand knowledge
distribution, more exposure to the system is necessary.

Let’s examine the local behavior questions. Based on the anal-
ysis of the AI agent, we know that synonym hints occur 29% of
the time and antonym hints occur 11% of the time. There was
no significant difference for the question about synonym rate;
both groups overestimate the rate of synonym occurrence. We
do see a significant difference for the question about antonym
rate: we find that winners, while still overestimating, are sig-
nificantly closer to the true rate than losers.



We might think that winners are simply trying harder than
losers, both in playing the game and in answering the survey
questions. They might be more reflective, take longer to play
the game, and therefore fill out the survey with more correct
answers – not because they have better mental models, but
because they try harder to use and explain them. However, it
turns out this is not the case. The average time for a winner
to make a guess is 15.6 seconds; losers take 20.5 seconds
(p-value is 0.3; not significant).

To better understand this result we asked 10 participants to
explain their answers to the survey questions about global
behavior and knowledge distribution.

Winners tended to have good recall for the gameplay, and
actively reflected on the gameplay to answer the questions.
For instance P2, who had a win rate of 0.8, gave this answer
in response to “WordBot knows a lot about food/cooking”:

P2 (0.8) One word was tomato and hints were salad and
red so the bot is good with food association.

In contrast, P5, who had a win rate of 0.4, acknowledged that
they did not have evidence for their answer but assumed it
would know about food associations anyway:

P5 (0.4) I never saw these words being used here but I
expect it to know some of these words.

Winners seem to be more likely to say “I’m not sure” than
make a guess – losers are more likely to go with their intuition.
Here is a winner, P3 who had a win rate of 0.8, reasoning
about global behavior, and if WordBot remembers the past
gameplay rounds:

P3 (0.8) I am not sure if this is the case, all the rounds
seemed independent to me.

It could be that a more accurate mental model enables better
gameplay, perhaps through a virtuous cycle in which better
gameplay encourages more engagement, which in turn further
improves gameplay. An alternative explanation is that there
is a characteristic of winners that makes them both better at
playing the game, and better at understanding the AI agent,
such as better verbal reasoning skills. This experiment alone
cannot distinguish between the two.

DISCUSSION
Our analysis of the AI agent itself and people’s interactions
with it during the think-aloud resulted in three principal compo-
nents of a conceptual model of an AI system: global behavior,
knowledge distribution, and local behavior. We also developed
a set of intuitions about how mental models are formed. We
discuss how this work can be generalized to other kinds of AI
systems and how our results on the development and accuracy
of mental models intersects with research on explainable AI
and AI trust. Finally, we address limitations of the study, and
unpack how we might better probe, understand, and influence
people’s mental models in the future.

What Conceptual Models Include
Conceptual models are models of a system developed over
time by experts. But AI systems seem somehow different

than a calculator or web site because there is often no one-to-
one mapping from the design of the system (for instance, the
neural architecture) and the behavior of the system.

To address RQ1, what should conceptual models of AI sys-
tems include, we analyzed both the underlying technology,
which includes the neural architecture, the training procedure,
and the data used to train it, as well as its actual behavior. The
analysis of its behavior was guided by our own experience
interacting with the AI system, as well as purposeful observa-
tions of others interacting with it. These three ingredients – the
underlying technology, observation of interaction, and anal-
ysis of behavior – seem necessary to develop an appropriate
conceptual model.

Through this we developed three categories or types of features
of the AI system: global behavior, knowledge distribution,
and local behavior. In the case of our AI agent, which played
a word guessing game, these categories have very specific
interpretations that have to do gameplay tactics and strategies,
and the type of common sense knowledge important for the
game. But we believe these categories can guide conceptual
model development of all kinds of AI systems.

For example, consider an AI system that makes health recom-
mendations based on test results. In this case, global behavior
would refer to whether or not recommendations change over
time, what these changes are based on, and if or how the
system learns from new examples or feedback. Knowledge
distribution would refer to if the system makes equally accu-
rate recommendations over all kinds of test results or types of
patients, what kinds of other information it has access to, and
whether it uses this knowledge appropriately. Local behav-
ior would refer to why specific recommendations are made,
what kinds of recommendations the system can make, and
what the most common recommendations are. For example, in
Bansal et. al [2] they look at people’s mental models of error
boundaries–their formulation would fit into local knowledge,
i.e. understanding the details of individual decisions.

This framework could be used to design tools that help users
understand complex AI systems. Consider again a health-
care recommendation system. Global behavior understanding
could be supported by an onboarding activity that specifies
how recommendations do or don’t change over time. Knowl-
edge distribution understanding could be supported by con-
textualizing results with information on how well the system
performs on different types of input. Local behavior under-
standing could be supported by generated explanations, or
breaking recommendations down into components.

Revising Mental Models in the Face of Anomalies
It is hard to track the development of mental models, but in
our think-aloud study we gained some insights into RQ2, how
do users develop mental models of AI systems. The most
common utterances in the think-aloud study had to do with
anomalies, distress, and trust – people talked most about their
mental model when something unexpected occurred. This is
also where we saw the most revision; despite trying to explain
an anomaly, when an anomaly persisted people did end up
revising their model. Antonym hints showed this clearly:



most people were initially distressed by antonym hints that
seemed to contradict the other hints presented, and some even
thought that these hints were mistakes. However, after the
game concluded they acknowledged that the behavior made
sense, revising their mental model.

Miller [17], in his review of insights from social sciences for
explainable AI, states two situations in which people desire
explanation: 1) when a contradiction occurs, and 2) when
shared meaning is desired. This dovetails nicely with our
finding that people tend to revise their mental models in the
face of anomalies. Considering how to design explanations
for AI systems, our results confirm Miller’s finding that we
should provide explanations to people when anomalies occur,
as this is when they are most open to revision and most desire
an explanation.

Outside Knowledge, Guessing, and Overestimation
In the Study 2, we studied the accuracy of people’s mental
models. Thinking of RQ3, what encourages accurate mental
models of AI systems, we mostly found evidence for the roots
of inaccurate mental models. Here we relate those findings to
techniques which might work against inaccurate models.

People tended to overestimate the AI system’s abilities, partic-
ularly those who lost the game the most. Sometimes people
guessed in the face of not enough information, like P5 from
the large-scale studying: “I never saw these words being used
here but I expect it to know some of these words.” But we
also saw people drawing explicitly on past experiences to ex-
plain their current experience. For example, P10 from the
think-aloud drew on their understanding of online targeted
advertising to interpret WordBot’s abilities. In this case, they
relied on outside knowledge to understand their experience in
the game, which resulted in overestimation.

This may be tied to the need for explanation. The second
most prevalent utterances from the think-aloud had to do with
pattern seeking – people had a strong desire to understand the
patterning of the hints when they didn’t know what to guess
next. (We might consider this state, of not knowing what to
guess, an anomaly; people may expect, in general, to know
what to do next.) A surprisingly common occurrence was the
participants trying to put all the given hints into a sentence or
a scene, and using that sentence/scene to discover a related
word to use as their guess. We expect the world to make sense
in specific, often narrative, ways. When an AI systems fails to
fit this expectation, it may lead to overestimation.

To encourage accurate mental models, we may have to be
pro-active in the face of existing parallels (does an AI system
behave differently to other systems) and the absence of signals
(does an AI system not do something, especially something
that might be expected).

Limitations
There are several limitations to this study. Most importantly,
there may be differences between the context of a game and
the context of, say, using a prediction to make a decision.
Although we saw differences between winners – who can be
thought of as high performers – and losers, this may or may

not transfer to more standard explainable AI scenarios, where
a user may be asked to explain how inputs affect outputs.
However, despite the different context, our study does seem
to follow the Bansal et. al human-AI interaction framework
[3], in which 1) the environment provides an input (the target
word), 2) the AI suggests an action (the hint), 3) the user makes
a decisions based on this (the guess), and 4) the environment
produces a reward based on the user decision (win or not).

Our study looks only at short-term exposure, and we found
that the difference between 5 and 10 games was too small to
detect. While many people are navigating AI systems for the
first time, it’s also important to consider long-term usage.

Finally, we looked at only one AI agent. Ideally, we could
compare AI agents with different features, to fully understand
how exposure affects mental models. If one AI agent does
adapt to each player, and another does not, will high perform-
ing players be sensitive to this? Some work has been done
on updating models [3] and comparing game performance
between AI models [7]; it would be worthwhile understanding
people’s sensitivities to model differences.

Future Directions
The question of how winning relates to accurate mental models
is important, and dovetails nicely with what kind of interven-
tions could improve people’s mental models. Although our
test-bed is games, it is in a way a prediction task, and winners
are better at predicting what the AI agent knows. How do we
confirm the relationship between winning and accurate mental
models? And can we improve people’s ability for both?

One could use our framework for testing interventions. Par-
ticipants could play a set number of games to get a baseline
win rate, experience an intervention such as an explanation
or example, and then play another set of games. This inter-
vention could occur either at a fixed time, after a participant
makes a successful prediction, or after a participant makes an
incorrect prediction. The difference between the win rate in
the first and second set of games can show if the intervention
was successful and if the timing of the intervention matters,
and surveys could measure if the intervention impacts men-
tal models. Such an experiment may work best in long-term
use cases, so we could also confirm how mental models are
developed given longer exposure to a system.

CONCLUSION
We studied conceptual and mental models of AI systems in the
context of a word guessing game. We developed a conceptual
model of an AI agent that plays the word guessing game, find-
ing three key components of conceptual models for AI systems
more generally: global behavior, knowledge distribution, and
local behavior. We probed user mental models in two stud-
ies: an in-person think-aloud study and a large-scale online
study. We found that people have existing intuitions about
how AI systems work that can upset their understanding of
this specific AI agent, that they can revise their mental model
in the face of anomalies, and that those who win the game
more often have better estimates of the AI agent.
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